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Abstract A quantum system coupled to a heat-bath in non-equilibrium environment is con-
sidered to study the problem of noise-induced escape rate from a metastable state in the
moderate to strong friction limit (Kramers’ regime). It is known that starting from an ini-
tial coherent state representation of bath oscillators, one can derive a c-number generalized
quantum Langevin equation where the quantum correction terms appear as a coupled infi-
nite set of hierarchy of equations. For practical purpose, one should truncate these equations
after a certain order. In our present development, we calculate the quantum correction terms
in a closed analytical form based on a systematic perturbation technique and then derive
the lowest order quantum correction factor exactly in the case of an Ohmic dissipative bath.
Finally, to demonstrate its applicability, the effective equation of motions has been used to
study the barrier crossing dynamics which incorporates the quantum correction factors.

Keywords Quantum Langevin equation · Quantum fluctuation · Quantum corrections ·
Quantum escape rate · Kramers’ regime

1 Introduction

The problem of quantum Langevin equation for a thermodynamically closed system has
been a subject of intensive study for several research groups [1–6] during the last few
decades due to its frequent appearance in the course of modelling of various phenomena,
particularly in the field of lasers and optics [1–4], signal processing [5, 6], noise induce
transport [7–10], spectroscopy [11–13] and so on. In the recent years, the subject has gained
considerable interest due to a vast experimental progress which allows for the tailoring and
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manipulation of quantum matter. In mesoscopic physics, for instance, super-conducting cir-
cuits have been realized to observe coherent dynamics and entanglement [14]. A similar
advancement has been achieved on molecular scales with the detection of interferences in
wave packet dynamics and the control of population of the specific molecular states [15].
Typically, these systems are in contact with a large number of environmental degrees of free-
dom, e.g. electromagnetic modes of the circuitry or residual vibronic modes which gives to
decoherence and relaxation [16].

For microscopic description of additive noise and linear dissipation which are related by
fluctuation dissipation relation, the quantum mechanical system-reservoir linear coupling
model is well established. The standard treatment of quantum dissipation based on linear
interaction between the system and the reservoir was put forward in early eighties by Calde-
ria and Legget [17] which found wide applications in several areas of condensed matter and
chemical physics. Later a number of interesting approaches to quantum theory of dissipative
rate processes such as dynamical semigroup method for evolution of density operator were
proposed in seventies to treat quantum nonlinear phenomena with considerable success. The
method which received major appreciation afterwards in the wide community of physicists
and chemists is the real time functional integrals [18]. Notwithstanding the phenomenal
success of the functional integral approach, it may be noted that compared to the classical
Kramers’ theory the method of functional integrals for the calculation of escape rate rests
on a fundamentally different footing. While the classical theory is based on the differential
equation of motion for evolution of probability distribution function of a particle execut-
ing Brownian motion in a forced field, the path integral method relies on the evolution of
quantum partition function of the systems interacting with heat-bath consisting of harmonic
oscillators with natural extension of the classical method to quantum domain.

In the standard approach to open quantum systems, the reduced dynamics of the system
of interest is obtained by tracing out the reservoir degrees of freedom from the conservative
system-plus-reservoir dynamics. Alternatively, the programme can be carried out through
path integral expressions for the reduced density matrix [19]. The distinguishing feature
of the dissipative path integrals is an influence functional which describes self-interactions
nonlocal in time. Hence, a simple quantum mechanical analogue to the classical Langevin
equation is not known. Commonly used equations, such as master or Redfield equation [20]
in the weak coupling case and quantum Smoluchowski equations [21] rely on perturbation
theory. In intermediates domains, quantum Monte Carlo techniques have been put forward
for tight binding systems, but achievable propagation times are severely limited by the dy-
namical sign problem [22, 23]. Recently, it has been shown that the influence functional
can be exactly reproduced through stochastic averaging of a process without explicit mem-
ory [24, 25]. The formulation turned out to be particularly efficient for weak to moderate
friction and low temperature [25, 26], a regime which lies beyond the validity of Redfield
equations, on the one hand, and beyond the applicability of Monte Carlo schemes, on the
other [22, 23]. For non-linear systems, the main objection of the Monte Carlo simulation is
that the convergence of the stochastic average for relatively long times is still an unsolved
problem, barring some progress for the spin-boson system, by using hierarchic approaches
to quantum memory terms [27]. A reliable and efficient generally applicable method to
tackle the dissipative dynamics is still missing. In this article we address the issue of han-
dling quantum dissipative dynamics, even for nonlinear system, when classical statistical
mechanical tools can be used, particularly in the context of noise-induced transport.

The rest of the paper is organized as follows. Based on a system-reservoir coupling
model, we develop and describe the quantum Langevin equation for a Brownian particle
and then we obtain the c-number analogue of this operator equation in Sect. 2. In Sect. 3, we
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derive the Fokker-Planck equation for a quantum Brownian particle moving in an external
force. Section 4 comprises the calculation of the quantum correction terms (which appear as
a closed analytical form) via a perturbative approach. Using these quantum corrections, we
solve the corresponding Kramers’ equation to study the barrier crossing dynamics in Sect. 5.
The paper has been concluded in Sect. 6.

2 The Transition from Operator Quantum Langevin Equation to Its c-Number Form

We start this section through a brief discussion of constructing the c-number formulation
of quantum dissipative dynamics, originally put forward by Ray and co-workers [28] in the
context of quantum state dependent diffusion. A particle of unit mass is connected to a hat
bath comprising of a set of harmonic oscillators of unit mass with frequency set {ωj }. The
total system-bath Hamiltonian can be written in the Zwanjig form [29] as

Ĥ = p̂2

2
+ V (x̂) +

∑

j

⎡

⎣ p̂2
j

2
+ 1

2

(
q̂j − cj

ω2
j

x̂

)2
⎤

⎦ (1)

where x̂ and p̂ are coordinate and momentum operators of the Brownian particle, {q̂j , p̂j }
is the set of coordinate and momentum operators for the heat-bath oscillators, V (x̂) is the
potential that exerts external force field on the system. This system is coupled to the heat-
bath linearly via the coupling constant cj . The coordinate and momentum operators follow
the usual commutation relations:

[x̂, p̂] = i�, [q̂j , p̂k] = i�δjk (2)

Eliminating the reservoir degrees of freedom in the usual way [18, 30], we obtain the
operator quantum Langevin equation corresponding to Hamiltonian (1) as follows:

¨̂x +
∫ t

0
dt ′γ (t − t ′) ˙̂x(t ′) + V ′(x ′) = ξ̂ (t) (3)

where, the noise operator ξ̂ (t) and the memory kernel γ (t) are given by

ξ̂ (t) =
∑

j

cj

[(
q̂j (0) − cj

ω2
j

x̂(0)

)
cos(ωj t) + p̂j (0)

ωj

sin(ωj t)

]
(4)

γ (t) =
∑

j

c2
j

ω2
j

cos(ωj t) (5)

Equation (3) is an exact generalized quantum Langevin equation in operator form [31].
Following the method of Ray and co-workers [28], we now replace (3) by its c-number
equivalent. We introduce product separable quantum states of the particle and the bath os-
cillators at t = 0,

|ψ〉 = |φ〉{|αj 〉} (6)
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where |φ〉 denotes any arbitrary initial state of the particle and {|αj 〉} corresponds to the
initial coherent state of the j th oscillator. Here, {|αj 〉} is given by

{|αj 〉} = exp

(
−1

2
|αj |2

) ∞∑

nj =0

(
α

nj

j√
nj !

)
|nj 〉 (7)

and αj is expressed in terms of the mean values of the coordinate and momentum of the j th
oscillator:

〈qj (0)〉 − 〈x̂(0)〉 =
√

�

2ωj

(αj + α	
j ) (8)

〈p̂j (0)〉 = −i

√
�ωj

2
(αj − α	

j ) (9)

Now, following the work of Ray and co-workers [28] and doing the quantum-statistical
averaging starting from an initial product separable quantum state [28], one obtains the c-
number generalized quantum Langevin equation:

q̈(t) +
∫ t

0
dt ′γ (t − t ′)q̇(t ′) + V (q ′) = ξ(t) + QV (q, t) (10)

where

q(t) = 〈x̂(t)〉 (11)

ξ(t) = 〈ξ̂ (t)〉 =
∑

j

[
{〈q̂j (0)〉 − 〈x̂(0)〉} cj

ω2
j

cos(ωj t) +
√

cj

ω2
j

〈p̂j (0)〉 sin(ωj t)

]
(12)

QV denote the quantum correction terms, given by

QV (q, t) = V ′(q, t) − 〈V ′(x̂, t)〉 (13)

In order that ξ(t) be an effective c-number noise we must have

〈ξ(t)〉S = 0 (14)

〈ξ(t)ξ(t ′)〉S = 1

2

∑

j

cj

ω2
j

�ωj coth

(
�ω

2kBT

)
cosωj (t − t ′) (15)

〈· · · 〉 denotes statistical average over the initial distribution of the mean values of the mo-
ments and coordinates of the bath oscillators. Equations (14) and (15) imply that ξ(t) is cen-
tered around zero and satisfies the quantum fluctuation dissipation relation, and is obtained
if and only if the initial quantum mechanical mean values of momenta and coordinates of
the bath oscillators have the following distribution [28]

Pj = N exp

[
−ω2

j {〈q̂j (0)〉 − 〈x̂j (0)〉}2 + 〈p̂j (0)〉2

2�ωj (n̄j + 1
2 )

]
(16)
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where N is the normalization constant and

n̄j =
[

exp

(
�ωj

kBT

)
− 1

]−1

is the average photon number at temperature T . The statistical average of any quantum
mechanical mean value of any observable Oj is defined as

〈Oj(0)〉S =
∫

Oj Pj d〈p̂j (0)〉d{〈q̂j (0)〉 − 〈x̂(0)〉} (17)

Using (11), (16) and (17) one can then easily show the properties (14) and (15) of the
c-number noise. At this juncture, it is important to note that Pj is a canonical Wigner dis-
tribution for a displaced harmonic oscillator which always remains positive [32]. Now, one
can identify (10) as a c-number generalized quantum Langevin equation which is governed
by the c-number quantum noise ξ(t) originating from the heat-bath and is characterized by
the properties (14) and (15). The quantum fluctuation term QV (q, t) originates from the
nonlinearity of the potential.

3 Quantum Fokker-Planck Equation

The classical Kramers’s equation forms the dynamical basis of our understanding of noise-
induced escape from a metastable state. It is interesting to note that although classical
Kramers’ equation was proposed more than sixty years ago, hopeful developments have
been recently reported in the direction of quantum mechanical analogue of the Kramers’
model. The quantum Kramers’ theory of reaction rate was developed primarily within path
integral framework. The validity of the major results is restricted to activated tunnelling
regime, i.e., above the cross-over temperature. The formation of quantum Langevin equa-
tion as developed in the earlier section is now extended to formulate a generalized quantum
Kramers’ equation which is valid in the deep tunnelling as well as for the non-Markovian
regime. We consider (10) and rewrite V (q) as a sum of linear and nonlinear terms by ex-
panding it in a Taylor series, say, around the bottom of the harmonic well at q = 0 as

V (q) = V (0) + 1

2
ω2q2 + VN(q) (18)

where VN(q) is the total nonlinear contribution and ω2
0 refers to V ′′(0). With the help of

(18), the Langevin equation may be rewritten as

q̈ + ω2
0q +

∫ t

0
dt ′γ (t − t ′)q̇(t ′) = −V ′

N(q) + QV (q, t) + ξ(t) (19)

The two potential dependent terms on the right-hand side of (19) can be evaluated as a func-
tion of t so that we may treat the entire right-hand side including ξ(t) as an inhomogeneous
contribution. We therefore write

q̈ + ω2
0q +

∫ t

0
dt ′γ (t − t ′)q̇(t ′) = QT (t) + ξ(t) (20)
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where QT (t) = QV (t) − V ′
N(q). Laplace transform of (20) leads to the following

q(t) = 〈q(t)〉S +
∫ t

0
cp(t − τ)ξ(τ )dτ (21)

where

〈q(t)〉S = q(0)cq(t) + p(0)cp(t) + G(t) (22)

G(t) =
∫ t

0
cp(t − τ)QT (τ)dτ (23)

cq(t) = 1 − ω2
0

∫ t

0 dτcp(τ ) (24)

where

cp(t) = L−1

[
1

s2 + sγ̃ (s) + ω2
0

]
(25)

Here, L−1 denotes the inverse of Laplace transformation and γ̃ (s) is the Laplace transform
of the memory kernel γ (t):

γ̃ (s) =
∫ ∞

0
exp(−st)γ (t)dt (26)

Time derivative of (21) gives

p(t) = 〈p(t)〉S +
∫ t

0
ċp(t − τ)ξ(τ )dτ (27)

where

〈p(t)〉s = p(0)ċp(t) − q(0)ω2
0cp(t) + g(t) (28)

with

g(t) = Ġ(t) (29)

In the above expressions, cp and ĉp(t) are the relaxation functions and G(t) is a con-
volution integral which describes the interplay between nonlinearity, quantum effects and
relaxation. Now using the symmetry properties of the correlation function 〈ξ(t)ξ(t ′)〉S and
the solution for q(t) and p(t), we have the following expressions for the variances

σ 2
qq(t) = 〈[

q(t) − 〈q(t)〉S
]2〉

S

= 2
∫ t

0
dt1cp(t1)

∫ t1

0
cp(t2)c(t1 − t2)dt2 (30)

σ 2
pp(t) = 〈[

p(t) − 〈p(t)〉S
]2〉

S

= 2
∫ t

0
dt1ċp(t1)

∫ t1

0
ċp(t2)c(t1 − t2)dt2 (31)



Investigation of Noise-Induced Escape Rate: A Quantum Mechanical 739

and

σ 2
pq(t) = 〈[

q(t) − 〈q(t)〉S
]2[

p(t) − 〈p(t)〉S
]2〉

S

= 2
∫ t

0
dt1cp(t1)

∫ t1

0
ċp(t2)c(t1 − t2)dt2 (32)

where

〈ξ(t)ξ(t ′)〉 = c(t − t ′) (33)

Having obtained the expression for the statistical average and variance, we are now in a
position to write down the quantum Kramers’ equation which is a Fokker-Planck description
of the probability density function ρ(q,p, t) of the quantum mechanical mean values of the
coordinate and momentum operators of the particle. Assuming the statistical description of
noise ξ(t) to be Gaussian, we define the joint characteristic function P̃ (μ,ρ, t) where (q,μ)

and (p,ρ) are Fourier transform pair of variables. Then, using the standard procedure [33],
we arrive at the equation of motion for probability distribution function P (q,p, t) which is
the inverse Fourier transform of P̃ (μ,ρ, t),

∂P (q,p, t)

∂t
= ∂

∂q

[{−p + g(t)}P (q,p, t)
]

+ ∂

∂p

[{Ṽ ′(q) + �(t) − N(t)}P (q,p, t)
]

+ ∂

∂p

[
ε(t)p

]
P (q,p, t) + φ(t)

∂2

∂p2
P (q,p, t) + ψ(t)

∂2

∂p∂q
P (q,p, t)

(34)

where

ε(t) = − d

dt
[lnY (t)] (35a)

Y (t) = ċp(t)

ω2
0

cq(t) + c2
p(t) (35b)

ω̃2
0(t) = 1

Y (t)

[−cp(t)c̈p(t) + ċ2
p(t)

]
(35c)

N(t) = 1

Y (t)

[
− 1

ω2
0

g(t)c̈p(t)cq(t) + ċ2
p(t)G(t)

]
(35d)

�(t) = cp(t)
d

dt

[
G(t)ċp(t)

]
(35e)

φ(t) = ω̃2
0(t)σ

2
qp(t) + ε(t)σ 2

pp(t) + 1

2
σ̇ 2

pp(t) (35f)

ψ(t) = σ̇ 2
qp(t) + ε(t)σ 2

qp(t) + ω̃2
0(t)σ

2
qq(t) − σ 2

pp(t) (35g)

Ṽ ′(q) is the renormalized potential linearized at q = 0, the frequency being ω̃2
0 as given

by (35c). The Fokker-Planck equation (34) is the quantum mechanical version of classical
non-Markovian Kramers’ equation and is valid for arbitrary temperature and friction. It is
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interesting to note that due to its explicit dependence of QT , the quantities g(t),�(t), and
N(t) manifestly include quantum effects through the nonlinearity of the system potential. In
the classical limit, the anharmonicity vanishes and for kBT � �ω0, φ(t) and ψ(t) reduce to
the forms that can be obtained by applying classical fluctuation-dissipation relation in (35f)
and (35g). Consequently, the quantum Kramers’ equation reduces exactly to non-Markovian
classical Kramers’ equation derived earlier by Aledman and Mazo [34–36] for harmonic
potential.

To proceed further it is worth noting that the classical-like stochastic differential equa-
tion, (20) contains essential quantum features, though the term ξ(t) which represents the
quantum noise of the heat bath and another term QV which essentially arises due to the
nonlinear part of the potential. The nonlinearity and the quantum effects are entangled in the
latter quantity modifying the classical part of the potential. Thus the classical potential force
−V ′(x, t) is modified by the quantum dispersion term. In absence of quantum dispersion
term, QV and with D0 → γ kBT as one approaches the classical limit [kBT � ��0; where
�0 is the average bath frequency] the quantum Langevin equation reduces to classical one
[37].

4 Quantum Correction Terms

Referring to the quantum nature of the system in the Heisenberg picture, we now write the
system operators x̂ and p̂ as

x̂(t) = q(t) + δx̂(t), p̂(t) = p(t) + δp̂(t) (36)

where q(= 〈x̂〉) and p(= 〈p̂〉) are the quantum mechanical mean values, and δx̂ and δp̂

are the operators and they are quantum fluctuations around their respective mean values. By
construction they also follow:

〈δx̂〉 = 0 = 〈δp̂〉, [
δx̂, δp̂

] = i�

Now using (36) and a Taylor series expansion around q , one obtains

QV (q, t) = −
∑

n≥2

1

n!V
(n+1)(q)〈δx̂n(t)〉 (37)

where V (n+1)(q) is the (n + 1)-th derivative of the potential V (q). The calculation of
QV (q, t) depends on quantum correction factor 〈δx̂n(t)〉 which may be obtained by solving
the quantum corrections.

Putting (36) in (3) one can easily show that the quantum correction equation is given by

δ ¨̂x(t) +
∫ t

0
dt ′γ (t − t ′)δ ˙̂x(t ′) + V ′′(q)δx̂(t) +

∑

n≥2

1

n!V
(n+1)(q)〈δx̂n(t)〉 = δε̂(t) (38)

where δε̂(t) = ε̂(t) − ε(t). For solving the Kramers’ equation to get the barrier crossing
dynamics, it is customary to linearize the potential around the potential well and also around
the top of the potential barrier [33, 36]. Thus to calculate the quantum correction terms, it
is sufficient to consider that the confining potential is harmonic: V (q) = V (0) + 1

2ω2
0q

2 and
consequently, (38) becomes

δ ¨̂x(t) +
∫ t

0
dt ′γ (t − t ′)δ ˙̂x(t ′) + ω2

0δx̂(t) = δε̂(t) (39)
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Since we calculate δ ¨̂x(t) in a perturbative way, we restrict our calculation to the leading
order of the quantum correction factors, i.e.,

QV (q, t) = −1

2
V ′′′(q)〈δx̂2

(t)〉 (40)

Thus, it is now adequate to derive only 〈δx̂2
(t)〉 for the calculation of quantum correction

factors.
With the above mentioned approximations, the quantum correction equation becomes

δ ¨̂x(t) +
∫ t

0
dt ′γ (t − t ′)δ ˙̂x(t ′) + ω2

0δx̂(t) = δε̂(t) (41)

The solution of (41) is

δx̂(t) = h1(t)δx̂(0) + h2(t)δ ˙̂x(0) +
∫ t

0
dt ′h2(t − t ′)δξ̂ (t ′) (42)

where h1(t) and h2(t) are the inverse Laplace transformation of h̃1(s) and h̃2(s) respectively
where

h̃1(s) = s + γ̃ (s)

s + sγ̃ (s) + ω2
0

(43)

h̃2(s) = 1

s + sγ̃ (s) + ω2
0

(44)

with

γ̃ (s) =
∫ ∞

0
γ (t) exp(−st)dt (45)

being the Laplace transformation of the frictional kernel γ (t). Squaring (42) and taking the
quantum statistical average, we obtain the relevant quantum correction 〈δx̂2

(t)〉 as follows:

〈δx̂2
(t)〉 = h2

1(t)〈δx̂2
(0)〉 + h2

2〈δp̂2
(0)〉

+ h1(t)h2(t)〈
(
δx̂(0)δp̂(0) + δp̂(0)δx̂(0)

)〉

+ 2
∫ t

0
dt ′

∫ t ′

0
dt ′′h2(t − t ′)h2(t − t ′′)〈δξ̂ (t ′)δξ̂ (t ′′)〉 (46)

A standard choice of initial conditions corresponding to minimum uncertainty state is [28,
38].

〈δx̂2
(0)〉 = �

2ω0
, 〈δp̂2

(0)〉 = �ω0

2
,

〈(
δx̂(0)δp̂(0) + δx̂(p)δx̂(0)

)〉 = � (47)

We would like to know the exact form of the function h1(t) and h2(t) in order to calculate
〈δx̂2

(t)〉. From the definition of h1(t) and h2(t), we have

h1(t) = 1

2πi

∫ i∞+ε

−i∞+ε

h̃1(s) exp(st)ds (48a)

h2(t) = 1

2πi

∫ i∞+ε

−i∞+ε

h̃2(s) exp(st)ds (48b)
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Using the residue one can easily show that for the Ohmic dissipative bath underdamped
case:

h1(t) = exp

(
−γ t

2

)[
cos(ω1t) + γ

2ω1
sin(ω1t)

]
(49a)

h2(t) = exp

(
−γ t

2

)[
1

ω1
sin(ω1t)

]
(49b)

where ω1 = ±
√

(ω2
0 − γ 2/4). Now for the Ohmic heat-bath, the double integral in (46) can

be written as

2
∫ t

0
dt ′

∫ t ′

0
dt ′′h2(t − t ′)h2(t − t ′′)〈δξ̂ (t ′)δξ̂ (t ′′)〉

= γ

π

∫ ∞

0
dω�ω coth

(
�ω

2kBT

)∫ t

0
dt ′

∫ t ′

0
dt ′′ exp

(
−γ (t − t ′)

2

)

×
[

sinω(t − t ′)
ω1

exp

(
−γ (t − t ′′)

2

)
sinω(t − t ′′)

ω1
cosω(t ′ − t ′′)

]

= γ

π

∫ ∞

0
dω�ω coth

(
�ω

2kBT

)∣∣∣∣∣
1 − e[−(γ /2−iω)t][cosω1t + (γ /2 − iω1)

sinω1t

ω1
]

ω2 − ω2
0 + iγ ω

∣∣∣∣∣

2

(50)

From (50), we observed that the time dependence of the mean fluctuation in displacement is
complicated, but it reduces to a simple form for large time compared to γ −1 and is given by

〈δx̂2〉eq = γ

π

∫ ∞

0
dω

{
�ω coth

(
�ω

2kBT

)
1

(ω2 − ω2
0)

2 + (γω)2

}
(51)

In the classical limit (i.e., for � → 0) we find

〈δx̂2〉eq = kBT

ω2
0

which is the classical equipartition result. In the weak damping regime (γ < ω), one obtains
from (51)

〈δx̂2〉eq = �

2ω0
coth

(
�ω0

2πkBT

)
(52)

5 Barrier Crossing Dynamics

We now turn to the problem of decay of a meta-stable state. We consider a particle of unit
mass moving in a cubic potential of the form

V (q) = −1

3
Aq3 + Bq2 (53)

where q now corresponds to the reaction coordinate, and its values at the extrema of the
potential at q = 0 and q = qb denote the reactant and the transition state, respectively. In this
model, all the remaining degrees of freedom of the system and the environment constitute a
heat-bath at a finite temperature T .
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Before proceeding further, we return to (5) and (15). To obtain a finite result in the con-
tinuum limit, the coupling function cj = c(ω) is chosen as

c(ω) = c0ω√
τ c

With this choice γ (t) reduces to the following form:

γ (t) = c2
0

τc

∫ ∞

0
dωD(ω) cos(ωt) (54)

where c0 is some constant and ωc = 1
τc

is the cutoff frequency of the bath oscillators. τc may
be regarded as the correlation time of the bath and D is the density of modes of the heat-bath
which is assumed to be Lorentzian:

D(ω) = 2

π

1

τc(ω2 + τ−2
c )

With these forms of D and c(ω), γ (t) takes the form:

γ (t) = c2
0

τc

exp (−t/τc) = γ

τc

exp (−t/τc) (55)

where c2
0 = γ . For τc → 0, (55) reduces to

γ (t) = 2γ δ(t) (56)

and the noise correlation function, (15) becomes

〈ξ(t)ξ(t ′)〉S = γ

2τc

∫ ∞

0
dω

{
�ω coth

(
�ω

2kBT

)
cosω(t − t ′)D(ω)

}
(57)

Equation (57) is an exact expression for two-time correlation. We now make the following
assumption. As �ω coth( �ω

2kBT
) is a much more smooth function of ω, at least for not too low

temperatures, the integral in (57) can be approximated as [28]

〈ξ(t)ξ(t ′)〉S 
 γ

2τc

��0 coth

(
��0

2kBT

)∫ ∞

0
dω cosω(t − t ′)D(ω)

where �0 is the average bath frequency. Thus, we have in the limit τc → 0,

〈ξ(t)ξ(t ′)〉S = 2D0δ(t − t ′) (58)

where

D0 = γ

2
��0

[
n(�0) + 1

2

]
(59)

Here, it is important to note that our above assumption is not valid for very low tem-
peratures. In this sense, our following development does not account the dynamics which
is fully quantum mechanical in nature. Nevertheless, the Ansatz, (16), which is the canon-
ical thermal Wigner distribution function for a harmonic oscillator system always remains
positive definite, containing the quantum information of the heat-bath comprised of a set
of quantum mechanical harmonic oscillator. A special advantage of using this distribution
function is that it remains valid as a pure state nonsingular distribution function even at
T = 0. Thus, from the very mode of our development, apart from the assumption regarding
two-time correlation function, (58), rest of our treatment is truly quantum mechanical.
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With the above mentioned scheme and for Ohmic dissipative bath (34) (i.e. the quantum
Kramers’ equation) reads [28]

∂P

∂t
= − ∂

∂q
(pP ) + ∂

∂p

[
γp + V ′(q) − QV

]
P + D0

∂2P

∂p2
(60)

Now linearizing the above equation near the bottom of the potential well one obtains the
approximate equation for the evolution of probability distribution function near the bottom
of the potential well,

∂P 0

∂t
= −p

∂P 0

∂q
+ γP 0 + [

γp + ω2
0q − QV

] ∂P 0

∂p
+ D0

∂2P 0

∂p2
(61)

In the steady state, (61) becomes

∂

∂t
P 0

St(q,p) = −p
∂P 0

∂q
+ γP 0 + [

γp + ω2
0q − Q0

V

] ∂P 0

∂p
+ D0

∂2P 0

∂p2
(62)

where Q0
V represents the equilibrium value of QV (q,p). The steady state solution of (61) is

given by

P 0
St(q,p) = 1

Z
exp

[
−
(

p2

2D0
+ ω2

0q
2 − 2Q0

V q

2D0

)]
(63)

and can be checked directly from (62) and (63). Equation (63) is the quantum mechanical

analogue of the classical equilibrium Boltzmann distribution, exp[− (
p2

2 +V (q))

kBT
]. In the clas-

sical limit, the thermal fluctuation is presented by the unique quantity kBT whereas, in the
present case, we have the quantity D0 which contains the information of thermal fluctua-
tions as well as the quantum fluctuations along with the effects of nonlinearity of the system
potential through the term QV . As we will see later, this leads to the recovery of the classical
rate expression in the high temperature limit. Now, linearizing the potential V (q) near the
top of the barrier (at q = qb), we get the equation of probability distribution function near
the barrier top [with V (y) = Vb − 1

2 ω2
by

2;ω2
b > 0]:

∂P b

∂t
= −p

∂P b

∂q
+ γP b + [

γp − ω2
by − QV

] ∂P b

∂p
+ D0

∂2P b

∂p2
(64)

Following Kramers’ we assume that the stationary solution of (64) is given by

P b
St(q,p) = exp

[
−
(

p2

2D0
+ ω2

by
2 − 2Q0

V y

2D0

)]
F(q,p) (65)

with y = (q − qb). The auxiliary function F(q,p) satisfies the equation

D0
∂2F

∂p2
− p

∂F

∂y
− [

γp + ω2
by + Q0

V

] ∂F

∂p
= 0 (66)

On letting u = p + ay, where a is a constant to be determined, the above (66) reduces to

D0
d2F

du2
− [

(γ + a)p + ω2
by

2 + Q0
V

] dF

du
= 0 (67)

Let us now consider

ω2
by + �p = −λu (68)
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where � = (γ + a) and λ is another constant. Then (67) becomes

d2F

du2
+ (�u + α)

dF

du
= 0 (69)

with

λ = �D0, α = Q0
V

D0
(70)

The quantities λ and a are related by −λ = γ + a and consequently a satisfies the equation:

a2 + γ a − ω2
b = 0

so that the two roots of a are

a± = 1

2

[
−γ ±

√
(γ 2 + 4ω2

b)

]

The general solution of (69) is given by

F(u) = F2

∫ u

0
du exp

[
−�

2
u2 − αu

]
+ F1 (71)

where F1 and F2 are two arbitrary constants. This solution must vanish at |u| → +∞ which
implies � should be positive definite and consequently the negative value of a i.e. a− should
be taken as the relevant root. Now, the requirement that F vanishes for large q yields the
relation between the two constants F1 and F2 as

F1 = F2

√
π

2�
exp

(
α2

2π

)[
1 − �

( α

2π

)]
(72)

where � is the probability integral:

�(x) = 2√
π

∫ x

0
dt exp(−t2)

Hence, the stationary expression of probability density function near the top of the barrier is
given by

P b
St(q,p) = F2

√
π

2�
exp

(
α2

2π

)[
1 − �

( α

2π

)]
+

∫ u

0
du exp

[
−�

2
u2 − αu

]

× exp

[
−
(

p2

2D0
+ V (q) − 2Q0

V q

2D0

)]
(73)

with V (q) ≈ V (0)− 1
2 ω2

b(q −qb)
2, ωb is the barrier frequency. We now define the stationary

current across the barrier as

j =
∫ +∞

−∞
pPSt(q,p)dp,

which after using (73) gives

j = F2 exp

(
α2

4β

)
D0

√
π

β
exp

(
−V (qb)

D0

)
(74)
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with β = �
2 + 1

2D0
. The number of particles in the left well is given by

na =
∫ +∞

−∞
dp

∫ +∞

−∞
dqP 0

St(q,p)

where, P 0
St(q,p) (63) is the steady-state solution of the Fokker-Planck equation (61) near

the bottom of the left well of the same. With the harmonic approximation near the bottom
of the left well, V (0) ≈ 1

2ω2
0q

2 at q ≈ 0, na is found to be

na = F2

[√
2π

�
exp

(
α2 + Q02

V

2π

)
+ Q02

V

4ω2
0

][
1 − �

( α

2π

)](2πD0

ω0

)
(75)

Using the definition of flux-over-population, k = j

na
and using (74) and (75), we get the

required expression for the stationary rate, k in the Markovian limit:

k = ω0

2π
[
1 − �

(
α

2π

)]
√

�

2β
exp

[
α2

(
1

4β
− 1

2�

)]
exp

(
−Q02

V

4ω2
0

)
exp

(
− Vb

D0

)
(76)

The above equation for stationary rate can be written more explicitly using the definitions
of various parameters as

k = ω0

2π
[
1 − �

(
α

2π

)]
√

λ

(λ + γ )

× exp

[
−Q02

V

2

(
γ

λ(λ + γ )
+ 1

2ω2
0

)]
exp

(
−Vbγ

D0

)

= ω0

2π
[
1 − �

(
α

2π

)]
ωb

⎡

⎣
√(

γ

2

)2

+ ω2
b −

(
γ

2

)⎤

⎦

× exp

⎡

⎣−Q02

V

2

(
2γ

γ +
√

γ 2 + 4ω2
b

+ 1

2ω2
0

)⎤

⎦ exp

(
−Vbγ

D0

)
(77)

with

D0 = γ

2
��0

[
n(�0) + 1

2

]
(78a)

Q0
V = −1

2
V ′′′(q)〈δx̂2〉eq = A〈δx̂2〉eq (78b)

= A�

2ω0
coth

(
�ω0

2πkBT

)
(78c)

Equation (77) is the key result of our development which quantifies the characteristic
quantum decay rate from a meta-stable state for a particle subjected to quantum fluctua-
tions. The quantity D0 in (77) is the quantum mechanical analogue of the thermal quantity
kBT . D0 contains the information of pure thermal fluctuations and fluctuations due to non-
linearity of the system potential which are pure quantum mechanical in nature. In the zero
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temperature limit when the quantum fluctuation play the major role, (77) gives the pure
tunnelling rate.

The classical Kramers’ expression for rate, may be obtained if one proceeds in the follow-
ing manner. In the limit of high temperature, the quantum correction terms are insignificant
and the thermal fluctuations play a dominant role. Under these circumstances, (77) yields
the classical rate for the thermal noise, with the underlying noise being essentially Markov-
ian. It is quite evident from the very mode of development that we have presented here that
in the absence of quantum dispersion, the term QV (q, t)[= V ′(q) − 〈V ′(x, t)〉] vanishes,
and as the classical limit (i.e. kBT � ��0) is being approached D0 reduces to γ kBT . This

obviates the vanishing of the parameters α = Q0
V

D0
, a signature of the absence of any quantum

dispersion. Consequently �( α
2π

) too goes off to zero. Thus, (77) provides the classical rate
for thermal noise when the underlying noise processes are Markovian and one obtains the
celebrated Kramers’ result (corresponding classical counterpart)

k = ω0

2πωb

⎡

⎣
√(

γ

2

)2

+ ω2
b −

(
γ

2

)⎤

⎦ exp

(
− Vb

kBT

)
(79)

It is pertinent to mention here that in the usual Kramer’s theory, the original non-linear
potential in which the Brownian particle moves is linearized both at the bottom and the top
of the potential but it has been pointed out that the quantum effects are entangled with the
non-linearity of the potential. So, to study the quantum effect of escape dynamics, the non-
linearity of the potential must be considered, which has been reflected through the term Q0

V

(see (78c)), where the parameter A comes from the non-linearity of the classical potential.
In this part we will indicate the relationship of the present method with other allied

method(s) in vogue. The problem of quantum mechanics for macroscopic systems has sim-
ulated considerable interest in the last few decades and the quantum version of the Kramers’
problem, namely the tunnelling decay of a metastable state in the presence of coupling to a
thermal bath (dissipation) has become very popular [39]. Quantum mechanical corrections
to classical reaction rate were introduced first by Wigner [40] when discussing the thermal
averaged transmission coefficients for parabolic barrier. The interest was stimulated by an
increasing amount of experimental data that span a large temperature domain from a few
mK, where quantum effects are extremely important to high temperatures at which the sys-
tem can be described classically [18].

Generally, the quantum Kramers’s problem is formulated by replacing the generalized
Langevin equation with an equivalent Hamiltonian in which the system is coupled linearly
to a bath of harmonic oscillators. Initial work on the quantum problem was implicitly based
on the assumption of thermal equilibrium within the well, allowing the use of equilibrium
statistical mechanics. Using a path integral approach Calderia and Leggett [17] have shown
that a zero temperature dissipation leads to an exponential reduction of the tunnelling. At
T = 0, the equilibrium assumption is valid for arbitrary coupling strength. The coupling to
the thermal bath leads to an exponential enhancement of the rate at low temperature com-
pared to its zero temperature value as shown by Larkin and Ovchinikov [41] and by Grabert,
Weiss and Hänggi [42]. The above mentioned calculations are based on a thermodynamic
method for the calculation of transition rates. In this approach pioneered by Langer [43]
one determines the free energy of an unstable system by means of an analytical continua-
tion and extracts the transition rate from the imaginary part. In an article Grabert et al. [44]
summarized the analytical and numerical results on imaginary free energy calculations for
the dissipative metastable systems. The method was found to be very successful in explain-
ing experimental data, but its validity is not known exactly due to the lack of first principle
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derivation. Ankerhold et al. [45] studied the real time dynamics of a dissipative quantum
system with a potential barrier and an evolution for the time dependent density matrix was
derived by employing a general framework provided by a path integral description. The
quantum theory of reaction rate is almost as old as quantum mechanics itself. But even
today, it presents some formidable challenge. Since the past few decades one can broadly
identify two approaches. One is to recognize the difficulty in obtaining exact quantum result
and proceed to find the numerically exact quantum rate. This approach has seen dramatic
advances and one can now routinely obtain numerically exact rates. A second approach, es-
pecially important for the condensed matter community is to replace rigor with reasonable
approximations. A strategy that has gained much popularity in recent years is to estimate
quantum rate using centroid density [18]. Since a centroid density is a thermodynamic ob-
ject, it can readily be estimated using Monte Carlo path integral techniques.

Although a number of interesting approaches to quantum theory of dissipative rate
process based on dynamical semigroup method for evolution of density operator were pro-
posed [1, 2] in the seventies to treat the quantum and nonlinear optical phenomena with
considerable success, the method could not gain strong ground in the theory of rate process
due to the fact that it is based on a weak system-reservoir coupling. The method which
received major impetus afterwards in the eighties and nineties in the wide community of
chemical physics is the real time functional integral. The method has been shown to be most
effective in treating quantum transition states, dissipative coherent quantum effects, as well
as the incoherent quantum tunnelling process [39]. Notwithstanding its phenomenal suc-
cess, it may, however, be noted that compared to classical Kramers’ theory, the method of
functional integrals for calculation of escape rate rests on a fundamentally different footing.
While the classical theory is based on the differential equation for evolution of probability
distribution function of a particle executing Brownian motion in a forced field, path integral
methods rely on the time evolution of quantum partition function of the system interacting
with a bath of harmonic oscillators with a characteristic frequency distribution. Here, instead
of path integral approach, we consider the quantum Langevin equation and obtain the corre-
sponding c-number Langevin equation but keeping the full quantum effect in the dynamics.
Then the corresponding Fokker-Planck equation is constructed to obtain the barrier crossing
dynamics. It is clear from the very mode of our development that we treat the barrier cross-
ing dynamics of a quantum system on a footing that is completely different from that of the
path integral approach.

To this end, we conclude that (20) can be considered as the classical analogue of gener-
alized Langevin equation.

6 Conclusion

Quantum systems coupled to a heat-bath environment have been found almost everywhere
in physics and chemistry. What one aims to describe in this context is the effective dy-
namics of the relevant system degrees of freedom, that is, the reduced dynamics. While the
corresponding classical theory is well established and based on Fokker-Planck equation, the
formulation of quantum mechanics is more complicated. In general, a simple time evolution
equation for the reduced density matrix does not exist, though the influence functional can be
exactly reproduced through stochastic averaging of a process, and the formulation of which
has been found to be effective for weak to moderate friction: a regime which lies beyond the
validity of Redfield equations and hence beyond the applicability of Monte Carlo schemes.
Furthermore, the problem of convergence of the stochastic averaging is still unsolved for a
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relatively long time. Recently, starting from an initial coherent state representation and us-
ing Wigner thermal distribution for harmonic oscillator, Ray and his group have developed a
c-number equation which includes the quantum correction terms. These correction terms ap-
pear as a coupled and infinite set of hierarchy of equations and for practical purposes, must
be truncated after the desired order and thus can not be cast in a closed form. In our present
work, based on a systematic perturbation technique we derive the quantum correction terms
in a closed analytical form and in the case of an Ohmic dissipative bath, we derive the lowest
order quantum correction factor exactly. Calculation of this correction factor leads us to han-
dle the quantum dynamics in terms of the effective classical Langevin equation and hence in
the framework of classical Fokker-Plank description. As an application of our methodology,
including these correction terms in Fokker-Planck equation we study the barrier crossing
dynamics to obtain the inverse of mean first passage time in closed form, which in the limit
kT � ��0 reduces to the classical Kramers’ equation. Not only barrier crossing or hopping
phenomena our development can also be used to study the quantum resonance phenomena
exactly. In our future work, we intend to study the stochastic resonance in quantum domain
and also the zero temperature case to calculate the pure tunnelling effect and vibrational
relaxation spectroscopy. Calculation of quantum correction factor for non-Ohmic bath and
for non-Markovian process is also an interesting venture for further study.
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